
Part 1 - Deployment

1

Background: Learning about data pipelines
This session will be all about the components of data pipelines. Specifically, we will be

using the following components for our pipeline today:

Extractor: Filebeat, Metricbeat, and Packetbeat

Buffer: Apache Kafka

Transformer/Loader: Apache NiFi

Database: OpenSearch

However, to demonstrate the pipeline working, we need an environment to gather data

from. So, we will be re-deploying the 5G core network and MonArch monitoring system
from yesterday.

2

Exercise: Re-deploying the 5G Core
To begin, we will use git clone to fetch the source code of our data pipeline and re-

create the entire Kubernetes setup we had deployed yesterday.

Tip: Triple-click to select a whole line in a code block. To paste in a terminal, use the shortcut Ctrl-Shift-V instead of Ctrl-V.

cd ~
git clone https://github.com/hautonjt/data-pipeline
cd data-pipeline
./day1.sh

We will be extracting logs from every Kubernetes container using Filebeat, memory and
CPU usage of the containers and hosts using Metricbeat, and network connection

information using Packetbeat. We will also demonstrate how to extend Metricbeat to
extract metrics from the Prometheus exporters in Monarch as well.

3

Background: How do we create a data pipeline?
Generally, in production we want to deploy a data pipeline in the following order:

1. Database

2. Buffer

3. Transformer/Loader

4. Extractors

The database and buffer are deployed first as they only receive events and do not send
them. Once both the database and buffer have been set up, connecting them with a

transformer/loader is trivial. Extractors are started last to prevent a build-up of events at
the buffer while waiting for the transformer/loader to initialize.

4

Background: How do we create a data pipeline?
(2)
However, for testing, it is easier to deploy the pipeline like this:

1. Database

2. Buffer

3. Extractors

4. Transformers/Loaders

By deploying the pipeline in this order, the extractors will send a bunch of events into
the buffer first, which will allow you to inspect the structure of each event. This makes it

much easier to check the events' schema as well as verify whether the information
needed by the transformer is available. We will deploy our pipeline using this order.

5

Background: What is OpenSearch?
As previously mentioned, we'll be using OpenSearch for the database of our pipeline.

OpenSearch is a fork of ElasticSearch developed by Amazon. It was forked because
the company developing ElasticSearch, Elastic NV, changed its license to restrict

commercial usage.

Due to its common ancestry, many open-source tools that work with ElasticSearch also

work with OpenSearch, including NiFi.

6

Background: How does OpenSearch Work?
Data stored in OpenSearch using indexes. Each index consists of a number of primary
shards, which allow data to be spread across multiple machines. These shards can be

configured with replicas to provided high availability.

OpenSearch
Node 1

OpenSearch
Node 2

OpenSearch
Node 3

filebeat

Primary
Shard 0

Primary
Shard 1

Replica
Shard 1

Replica
Shard 0

Primary
Shard 2

Replica
Shard 2

metricbeat

Replica
Shard 0

Primary
Shard 0

Primary
Shard 1

Replica
Shard 1

NiFi

Filebeat

Data

Metricbeat

Data

7

Exercise: Deploying the database
First, let's deploy the OpenSearch cluster. Run the following:

cd ~/data-pipeline
./deploy-opensearch.sh

Note: you will need to type your password (user) for this script as it uses sudo internally

This script does the following:

Create a highly available OpenSearch cluster of 3 pods

Provision an instance of OpenSearch Dashboards

Configure certificate-based authentication

8

Optional: Switching namespaces
All of the containers we will be deploying in this session will be assigned to a new
namespace named datapipeline .

Since we will be interacting with the datapipeline namespace the most in this lab, we
can switch the namespace that kubectl is connected to by running:

kubectl config set-context --current --namespace=datapipeline

Tip: if OpenSearch is still deploying, you can also run this in a new terminal window

Now, if you run a kubectl command, such as, kubectl get pods , it will run that
command in the context of the datapipeline namespace by default.

We won't be using kubectl directly this session, but it can still be useful for debugging.

9

Exercise: Access OpenSearch Dashboards
Tip: Click links with your scroll wheel (middle click) to open links in a new tab. Alternatively, right click to choose if a link should open in a new

tab or window.

To access the dashboards, navigate to http://localhost:32001. Both the username and
password to log in are set to the value admin . If you reach the screen below, then

OpenSearch has been deployed successfully and you may close it. We will return to
OpenSearch later.

10

http://localhost:32001/

Exercise: Deploy Kafka
Now that OpenSearch is configured, we can install Apache Kafka. To deploy Kafka,

ensure you are in the data-pipeline directory, and run:

cd ~/data-pipeline
./deploy-kafka.sh

This deploys both a Kafka cluster and Kafka-UI, which can be used to configure Kafka

using a GUI.

11

Background: What is Kafka?
Kafka is a distributed event store. Events in Kafka are mainly divided into topics, which

are essentially categories of events. Topics are divided into partitions. These partitions
allow events in a topic to be distributed across different instances of Kafka, and

replicated partitions can provide fault-tolerance.

12

Background: What is Kafka? (2)
Topics can be configured to have any number of partitions. The higher number of

partitions, the more distributed your data becomes, at the cost of some overhead. Data
redundancy and availability is configured using the replication factor, and the number of

in-sync replicas.

Replication factor

Replication factor controls the number of copies of each partition. Having a replication
factor of 1 means only 1 copy of each partition, meaning no redundancy. Higher

replication factors mean that data from a partition can still be available as long as one
copy is still present.

13

Background: What is Kafka? (3)

Min in-sync replicas

Each event must be present in at least min in-sync replicas before being successfully

written. This minimizes the probability of data loss, but also means that if fewer than
that many replicas of a partition are present, a partition could no longer be written to.

Data persistence

Unlike message queues like RabbitMQ, data stored in Kafka topics are not deleted
when events are processed. Deletion is instead controlled by a data retention setting.

This means that if an issue occurs in the transformer causing events to be corrupted,
events can be re-ingested from the same Kafka topic before retention expires. Kafka

consumers need to keep track of what events it has read from a topic.
14

Exercise: Configuring Kafka
1. Accessing Kafka-UI
Once the deployment is done, the UI is accessible at http://localhost:32000.
2. Create filebeat topic
On the left sidebar, click "Topics", then on the top right, select "Add a Topic". Fill out the
following settings, then select "Create" to create the filebeat topic:

Topic Name: filebeat

Number of partitions: 3

Min in-sync replicas: 2

Replication factor: 2

Time to retain data: 1 day (select the "1 day" box below the input)

15

http://localhost:32000/

Exercise: Configuring Kafka (2)
Mini-Lab

Repeat the prior steps with the topics metricbeat , packetbeat , and prometheus .
All other settings should remain the same. Your final screen topics screen should look

something like this:

Hint: Click on the Topics button in the sidebar again after creating a topic to access the "Add a Topic" button quickly. 16

Background: Deploying Beats Agents
Now, we will be deploying our Filebeat, Metricbeat, and Packetbeat agents. Out of the

box, Filebeat, Metricbeat, and Packetbeat all support Kubernetes natively and can
gather data from Kubernetes automatically, but we also want to gather metrics from our

custom Prometheus exporters in Monarch.

To do this, we will need to explicitly configure Metricbeat to find the Prometheus

endpoints.

17

Exercise: Configuring Beats Agents (1)
Open the data-pipeline folder in VS Code. You can do this by typing:

cd ~/dat-pipeline
code .

In the beats folder, there is a file called metricbeat-prometheus.yaml .

Find the section that looks like this:

 metricbeat.modules:
 - module: prometheus
 period: 5s
 hosts: ["nssdc-kube-state-metrics.monarch.svc:8080"]
 metricsets: ["collector"]
 metrics_path: /metrics
 ...

18

Exercise: Configuring Beats Agents (2)
That section in the file metricbeat-prometheus.yaml is responsible for configuring

endpoints for Prometheus collectors. We want to add the metrics endpoint from
Monarch to gather slice monitoring metrics.

Mini-Lab: Open the Prometheus GUI deployed by Monarch, and view the list of
endpoint URLs.

Add the AMF, SMF, and UPF endpoints on that page to the Metricbeat configmap by
replacing the <insert AMF/SMF/UPF collector URL> placeholder text. Ensure that the

port is included in the URL, but the /metrics subpath is removed.

Note that two endpoints have already been configured for Metricbeat as examples so

you can see what the format should look like.

19

http://localhost:30095/targets?search=

Exercise: Configuring Beats Agents (3)
Mini-Lab Hint:

Note: answers are in the ~/data-pipeline/lab/metricbeat-prometheus.yaml file if you are stuck.

20

Exercise: Deploy Beats
Now that all the Prometheus endpoints are configured, we can deploy Filebeat,

Metricbeat, and Packetbeat all at once. To do this, run:

cd ~/data-pipeline
./deploy-beats.sh

This will deploy a variety of Beats to collect metrics we want from the 5G core.

21

Background: What Beats are we deploying?
Filebeat, Metricbeat, and Packetbeat all produce events from different types of

information.

Filebeat reads informations mainly from log files and JSON HTTP endpoints. Filebeat

has native integration with Kubernetes, enabling it to read the logs of all running
containers, even ones deployed after Filebeat. For advanced use cases, Filebeat can

also use Kubernetes annotations to separately parse the logs of certain containers, if
necessary.

Packetbeat captures connection information from all network interfaces present in the
current running machine. This includes ingress traffic, egress traffic, and network traffic

between pods.

22

Background: What Beats are we deploying? (2)
Metricbeat reads metrics, typically resource usage, from the system. It also has native

integrations with various metrics providers. Notably, this includes Prometheus, allowing
us to integrate with Monarch. It also integrates with kube-state-metrics , which

Monarch installs. kube-state-metrics is a tool that automatically gathers all sorts of
statistical information about a Kubernetes cluster.

Beats are designed to be deployed together, and have a unified schema designed to
make it simple to correlate events from different sources in OpenSearch. Thus, one

advantage of using Beats is not having to worry about normalizing the schema in the
transformer. Additionally, visualizations and tools that use the Beats schema would

work out-of-the-box.

23

Checkpoint: Kafka Topic Messages
If you check the Kafka UI at http://localhost:32000, you should be able to see

messages in all the topics if you navigate to Topics on the left menu. Within each
individual topic, you can view the messages within the topic by selecting the

"Messages" tab. If the number of messages is 0, please ask for help.

None of these should be zero!

24

http://localhost:32000/

Exercise: NiFi
Finally, let's deploy NiFi. To do this, run:

./deploy-nifi.sh

Note: you will need to type your password (user) for this script as it uses sudo to copy the geoip database to a system directory.

This script does the following:

deploys a NiFi cluster of 3 nodes

deploys a Zookeeper cluster of 3 nodes (used by NiFi for maintaining configuration

and cluster information)

Warning: this deployment takes a long time to complete.

25

Background: How does NiFi work?
NiFi is a versatile distributed data processor. NiFi allows you to create data processing

graphs that can allow you to visually see how data will be processed.

NiFi operates using the concept of FlowFiles, which is just a container that can hold

any data along with some attributes, which are essentially metadata. This means that
FlowFiles inherently do not have any structure at all.

Processors act on FlowFiles and transforms them in some way. There are a vast array
of processors that cater to almost any use case, and for use cases that built-in

processors are incapable of handling, NiFi also supports calling external scripts. You
can integrate ML with NiFi directly using processors instead of interfacing with Kafka.

26

Background: How does NiFi work? (2)
Since FlowFiles have no structure, typically services need to be specified so the
processor knows how to parse the FlowFile and what format to output it in. For

example, the JsonTreeReader service reads the FlowFile and parses it into one or
more JSON object for processing. The JsonRecordSetWriter writes an array of JSON

objects as its output.

Services are not limited to just parsing FlowFiles, they also provide services such as

SSL authentication, OpenSearch integration, caching, lookups, and more.

27

Next Steps
Congratulations!
You have successfully completed the following:

Deployed all the components of a data pipeline

Configured Apache Kafka and Beats

Customized Metricbeat configuration to pull metrics from Prometheus

What's Next?
Configure NiFi and visualizations in Part 2.

28

https://hautonjt.github.io/pipeline2.pdf

